Local convergence analysis of FastICA and related algorithms.

IEEE Trans Neural Netw

Canberra Research Laboratory, National ICT Australia, Ltd., Australia.

Published: June 2008

The FastICA algorithm is one of the most prominent methods to solve the problem of linear independent component analysis (ICA). Although there have been several attempts to prove local convergence properties of FastICA, rigorous analysis is still missing in the community. The major difficulty of analysis is because of the well-known sign-flipping phenomenon of FastICA, which causes the discontinuity of the corresponding FastICA map on the unit sphere. In this paper, by using the concept of principal fiber bundles, FastICA is proven to be locally quadratically convergent to a correct separation. Higher order local convergence properties of FastICA are also investigated in the framework of a scalar shift strategy. Moreover, as a parallelized version of FastICA, the so-called QR FastICA algorithm, which employs the QR decomposition (Gram-Schmidt orthonormalization process) instead of the polar decomposition, is shown to share similar local convergence properties with the original FastICA.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2007.915117DOI Listing

Publication Analysis

Top Keywords

local convergence
16
convergence properties
12
fastica
10
fastica algorithm
8
properties fastica
8
local
4
analysis
4
convergence analysis
4
analysis fastica
4
fastica algorithms
4

Similar Publications

Dung Beetle algorithm is an intelligent optimization algorithm with advantages in exploitation ability. However, due to the high randomness of parameters, premature convergence and other reasons, there is an imbalance between exploration and exploitation ability, and it is easy to fall into the problem of local optimal solution. The purpose of this study is to improve the optimization performance of dung beetle algorithm and explore its engineering application value.

View Article and Find Full Text PDF

In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation.

View Article and Find Full Text PDF

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Three-dimensional convolutional neural network for leak detection and localization in smart water distribution systems.

Water Res X

December 2024

Professor, Department of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ 85721, USA.

Smart meters such as advanced metering infrastructure (AMI) can significantly improve identifying realistic sized leaks in water distribution networks (WDNs). However, to date, detection/localization methods for AMI systems are extremely limited. In this study, to examine the benefits of using AMIs for leak detection within distribution network, a three-dimensional (3D) convolutional neural network (CNN) deep learning (DL) model is proposed that can account for temporally and spatially distributed information of pressures.

View Article and Find Full Text PDF

Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!