Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel extraction procedure for stir bar sorptive extraction (SBSE) termed sequential SBSE was developed. Compared to conventional SBSE, sequential SBSE provides more uniform enrichment over the entire polarity/volatility range for organic pollutants at ultra-trace levels in water. Sequential SBSE consists of a SBSE performed sequentially on a 5-mL sample first without modifier using one stir bar, then on the same sample after addition of 30% NaCl using a second stir bar. The first extraction with unmodified sample is mainly targeting solutes with high Kow (logKow>4.0), the second extraction with modified sample solution (containing 30% NaCl) is targeting solutes with low and medium Kow (logKow<4.0). After extraction the two stir bars are placed in a single glass desorption liner and are simultaneously desorbed. The desorbed compounds were analyzed by thermal desorption and gas chromatography-mass spectrometry (TD-GC-MS). Recovery of model compounds consisting of 80 pesticides (organochlorine, carbamate, organophosphorus, pyrethroid, and others) for sequential SBSE was evaluated as a function of logKow (1.70-8.35). The recovery using sequential SBSE was compared with those of conventional SBSE with or without salt addition (30% NaCl). The sequential approach provided very good recovery in the range of 82-113% for most of the solutes, and recovery less than 80% for only five solutes with low Kow (logKow<2.5), while conventional approaches (with or without salt addition) showed less than 80% recovery for 23 and 41 solutes, respectively. The method showed good linearity (r2>0.9900) and high sensitivity (limit of detection: <10ngL(-1)) for most of the model compounds even with the scan mode in the MS. The method was successfully applied to screening of pesticides at ngL(-1) level in river water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2008.05.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!