AI Article Synopsis

Article Abstract

Background: The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored.

Results: Eighty nine isolates were obtained from the sediments of four deep-sea, hypersaline anoxic brine lakes in the Eastern Mediterranean Sea: l'Atalante, Bannock, Discovery and Urania basins. This culture collection was dominated by representatives of the genus Bacillus and close relatives (90% of all isolates) that were investigated further. Physiological characterization of representative strains revealed large versatility with respect to enzyme activities or substrate utilization. Two third of the isolates did not grow at in-situ salinities and were presumably present as endospores. This is supported by high numbers of endospores in Bannock, Discovery and Urania basins ranging from 3.8 x 10(5) to 1.2 x 10(6) g(-1) dw sediment. However, the remaining isolates were highly halotolerant growing at salinities of up to 30% NaCl. Some of the novel isolates affiliating with the genus Pontibacillus grew well under anoxic conditions in sulfidic medium by fermentation or anaerobic respiration using dimethylsulfoxide or trimethylamine N-oxide as electron acceptor.

Conclusion: Some of the halophilic, facultatively anaerobic relatives of Bacillus appear well adapted to life in this hostile environment and suggest the presence of actively growing microbial communities in the NaCl-rich, deep-sea brine-lake sediments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464584PMC
http://dx.doi.org/10.1186/1746-1448-4-8DOI Listing

Publication Analysis

Top Keywords

deep-sea hypersaline
12
hypersaline anoxic
12
brine lakes
12
anoxic brine
8
microbial communities
8
l'atalante bannock
8
brine-lake sediments
8
bannock discovery
8
discovery urania
8
urania basins
8

Similar Publications

Harmful algal blooms (HABs) often occur in estuaries due to their unique environmental heterogeneity, posing significant environmental and human health risks. However, there is limited understanding of the community composition and community-level change points (thresholds) of harmful microalgae in subtropical estuaries. This study explored harmful microalgae community structure and thresholds in the Dafengjiang River estuary using a metabarcoding approach.

View Article and Find Full Text PDF

Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.

View Article and Find Full Text PDF

Extreme environments enable the study of simplified food-webs and serve as models for evolutionary bottlenecks and early Earth ecology. We investigated the biodiversity of invertebrate meiofauna in the benthic zone of the Great Salt Lake (GSL), Utah, USA, one of the most hypersaline lake systems in the world. The hypersaline bays within the GSL are currently thought to support only two multicellular animals: brine fly larvae and brine shrimp.

View Article and Find Full Text PDF

Non-lytic viruses with enveloped pleomorphic virions (family Pleolipoviridae) are ubiquitous in hypersaline environments across the globe and are associated with nearly all major lineages of halophilic archaea. However, their existence in other ecosystems remains largely unknown. Here, we show that evolutionarily-related viruses also infect hyperthermophilic archaea thriving in deep-sea hydrothermal vents.

View Article and Find Full Text PDF

Cafeteria in extreme environments: Investigations on C. burkhardae and three new species from the Atacama Desert and the deep ocean.

Eur J Protistol

August 2022

General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany. Electronic address:

The heterotrophic nanoflagellate genus Cafeteria has been found to be ubiquitously distributed in the marine realm. We could isolate and cultivate ten strains morphologically similar to Cafeteria from various types of environment, including the deep sea, brackish waters and also meso- to hypersaline inland waters. Molecular analyses (18S rDNA, 28S rDNA) of newly isolated strains from the marine realm resulted in four more Cafeteria burkhardae strains from the deep North Atlantic Ocean and one new species (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!