Anthocyanins (ACNs) have been reported to have multiple biological properties imparting benefits to human health. Their role in human nutrition, however, needs to be related to biokinetic data, such as bioavailability. The purpose of the present study was to focus on the potential absorption of black currant ( Ribes nigrum L.) ACNs. Caco-2 monolayers were used as an in vitro model of the absorptive intestinal epithelium. For absorption studies, Caco-2 cells grown on permeable filters were mounted into Ussing type chambers. The monolayer integrity was monitored by measuring the transepithelial electrical resistance (TEER). Luminal to serosal transport of ACNs was examined by comparing ACN disappearance from the luminal solution of Ussing chambers not containing any inserts (control chambers) with that of Ussing chambers containing inserts. ACNs (C total ACN approximately 180 microM) were not detected in any serosal solution. However, it was shown that ACNs disappeared from the luminal side, not due to ACN degradation processes but rather--at least in part--due to physiological actions of the cells. The luminal net disappearance of ACNs was calculated (max(t20 min) approximately 11% for total ACNs) and labeled as "absorption efficiency". This apical transport might occur to a much larger extent than the further translocation across the basolateral membrane. Thus, cell metabolism and translocation across the basolateral membrane may be the key determinants of ACN absorption and bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf703670hDOI Listing

Publication Analysis

Top Keywords

absorption black
8
black currant
8
caco-2 cells
8
mounted ussing
8
ussing type
8
type chambers
8
ussing chambers
8
chambers inserts
8
translocation basolateral
8
basolateral membrane
8

Similar Publications

This study investigated the performance of various spectrophotometric methods in predicting visually perceived translucency and evaluated the efficiency of imaging techniques in quantifying translucency. We conducted the visual assessment in two stages using the pair comparison method. In the first stage, pairs of samples with identical colors but differing levels of translucency were compared.

View Article and Find Full Text PDF

NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties.

Anal Chem

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Small molecule near-infrared (NIR) fluorophores play a critical role in disease diagnosis and early detection of various markers in living organisms. To accelerate their development and design, a deep learning platform, NIRFluor, was established to rapidly screen small molecule NIR fluorophores with the desired optical properties. The core component of NIRFluor is a state-of-the-art deep learning model trained on 5179 experimental big data.

View Article and Find Full Text PDF

The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.

View Article and Find Full Text PDF

Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.

View Article and Find Full Text PDF

Polyphenol metabolomics reveals the applications and prospects of polyphenol-rich plants in natural dyes.

For Res (Fayettev)

December 2024

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.

Polyphenols, as one of the primary compounds produced by plant secondary metabolism, have garnered considerable attention because of their non-toxic, environmentally friendly, and biodegradable properties, as well as their notable medicinal value. This study presents a metabolomic analysis of polyphenols from 11 woody plants, including , , and , investigating a total of 40 polyphenolic metabolites. A differential metabolite dynamics map highlighted the five most differentiated substances among the 11 plants, including vitexin, dihydromyricetin, genistin, resveratrol, and isorhamnetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!