A novel approach was developed to rationally interface structure- and ligand-based drug design through the rescoring of docking poses and automated generation of molecular alignments for 3D quantitative structure-activity relationship investigations. The procedure was driven by a genetic algorithm optimizing the value of a novel fitness function, accounting simultaneously for best regressions among binding-energy docking scores and affinities and for minimal geometric deviations from properly established crystal-based binding geometry. The GRID/CPCA method, as implemented in GOLPE, was used to feature molecular determinants of ligand binding affinity for each molecular alignment. In addition, unlike standard procedures, a novel multipoint equation was adopted to predict the binding affinity of ligands in the prediction set. Selectivity was investigated through square plots reporting experimental versus recalculated binding affinities on the targets under examination. The application of our approach to the modeling of affinity data of a large series of 3-amidinophenylalanine inhibitors of thrombin, trypsin, and factor Xa generated easily interpretable and independent models with robust statistics. As a further validation study, our approach was successfully applied to a series of 3,4,7-substituted coumarins, acting as selective MAO-B inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci800015sDOI Listing

Publication Analysis

Top Keywords

drug design
8
binding affinity
8
integrated approach
4
approach ligand-
4
ligand- structure-based
4
structure-based drug
4
design development
4
development application
4
application series
4
series serine
4

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Background: This study aimed to provide a comprehensive review of adverse events (AEs) associated with factor Xa (FXa) inhibitors in pediatric patients.

Methods: We searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and the European Union Clinical Trials Register for English-language records from the establishment of the database up to October 17, 2023.

View Article and Find Full Text PDF

Pharmacologic Management of Heart Failure with Preserved Ejection Fraction (HFpEF) in Older Adults.

Drugs Aging

January 2025

Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.

There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.

View Article and Find Full Text PDF

Biomarkers play a pivotal role in the selection and enrollment of trial participants. Particularly, predictive biomarkers help tailor medical care to individual patients; however, also prognostic biomarkers require consideration at the design stage. At the time of initiating a clinical trial, there may be uncertainty about whether a biomarker is predictive or prognostic, and the trial design may need to account for this.

View Article and Find Full Text PDF

Purpose: To examine associations between identified factors to accessing Food and Drug Administration-approved quit medication (FDAQM) and use among a sample of tobacco users.

Design: Cross-sectional, online survey.

Setting: County in Central California.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!