Pepsin-solubilized collagen (PSC) was conjugated with carboxymethyl dextran (CMD) using cyanogen bromide to obtain a PSC-CMD film having improved physical properties, physiological properties, and cell affinity. The conjugation was confirmed by the loss of the alpha- and beta-subunit chains and the polymerized band on SDS-PAGE, and by a decrease in the isoelectric point to 3.2. PSC-CMD had a large polymerized structure with the 6 PSC and 228 CMD molecules. PSC-CMD was readily soluble in water, reconstructed a matrix with a less-ordered structure and a characteristic morphological shape, and lost platelet aggregation-inducing ability. The PSC-CMD film, cross-linked by ultraviolet irradiation, exhibited reduced solubility, moderate water vapor permeability, and increased flexibility. PSC-CMD coatings exhibited good cell attachment and growth for fibroblasts and vein endothrical cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.70751 | DOI Listing |
Viruses
December 2024
Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Laboratory of Proteolytic Enzyme Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Physico-Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania.
Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system.
View Article and Find Full Text PDFPharmaceutics
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer.
View Article and Find Full Text PDFPharmaceutics
November 2024
The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!