Transcriptomics was performed to gain insight into mechanisms of food additives butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG), and thiabendazole (TB), additives for which interactions in the liver can not be excluded. Additives were administered in diets for 28 days to Sprague-Dawley rats and cDNA microarray experiments were performed on hepatic RNA. BHT induced changes in the expression of 10 genes, including phase I (CYP2B1/2; CYP3A9; CYP2C6) and phase II metabolism (GST mu2). The CYP2B1/2 and GST expression findings were confirmed by real time RT-PCR, western blotting, and increased GST activity towards DCNB. CC altered the expression of 12 genes. Three out of these were related to peroxisomes (phytanoyl-CoA dioxygenase, enoyl-CoA hydratase; CYP4A3). Increased cyanide insensitive palmitoyl-CoA oxidation was observed, suggesting that CC is a weak peroxisome proliferator. TB changed the expression of 12 genes, including CYP1A2. In line, CYP1A2 protein expression was increased. The expression level of five genes, associated with p53 was found to change upon TB treatment, including p53 itself, GADD45alpha, DN-7, protein kinase C beta and serum albumin. These array experiments led to the novel finding that TB is capable of inducing p53 at the protein level, at least at the highest dose levels employed above the current NOAEL. The expression of eight genes changed upon PG administration. This study shows the value of gene expression profiling in food toxicology in terms of generating novel hypotheses on the mechanisms of action of food additives in relation to pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2008.04.019 | DOI Listing |
PLoS Genet
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFPLoS One
January 2025
Physical Culture Institute Ludong University, City Yantai, Shandong Province, China.
The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.
Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!