Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
O-linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible, and reversible post-translational modification of nuclear and cytoplasmic proteins on Ser/Thr amino acid residues. In addition to its putative role as a nutrient sensor, we have recently shown pharmacologic elevation of O-GlcNAc levels positively affected myocyte survival during oxidant stress. However, no rigorous assessment of the contribution of O-GlcNAc transferase has been performed, particularly in the post-hypoxic setting. Therefore, we hypothesized that pharmacological or genetic manipulation of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc to proteins, would affect cardiac myocyte survival following hypoxia/reoxygenation (H/R). Adenoviral overexpression of OGT (AdOGT) in cardiac myocytes augmented O-GlcNAc levels and reduced post-hypoxic damage. Conversely, pharmacologic inhibition of OGT significantly attenuated O-GlcNAc levels, exacerbated post-hypoxic cardiac myocyte death, and sensitized myocytes to mitochondrial membrane potential collapse. Both genetic deletion of OGT using a cre-lox approach and translational silencing via RNAi also resulted in significant reductions in OGT protein and O-GlcNAc levels, and, exacerbated post-hypoxic cardiac myocyte death. Inhibition of OGT reduced O-GlcNAc levels on voltage dependent anion channel (VDAC) in isolated mitochondria and sensitized to calcium-induced mitochondrial permeability transition pore (mPTP) formation, indicating that mPTP may be an important target of O-GlcNAc signaling and confirming the aforementioned mitochondrial membrane potential results. These data demonstrate that OGT exerts pro-survival actions during hypoxia-reoxygenation in cardiac myocytes, particularly at the level of mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610867 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2008.04.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!