Protection of neurons by stem cells is an attractive challenge in the development of efficient therapies of neurodegenerative diseases. When giving preference to autologous grafts, the bone marrow constitutes a valuable source of adult stem cells. Therefore, we herein studied the acquisition of neuroprotective functions by cultured mesenchymal stem cells (MSCs) exposed to growth factors known to promote the differentiation of neural stem cells into astrocytes. In these conditions, MSCs showed increased transcription and expression of the high-affinity glutamate transporter GLT-1 and functional studies revealed increased aspartate uptake activity. In addition, differentiation was shown to endow the cells with the capacity to respond to riluzole which triggers a robust up-regulation of the GDNF production. In parallel, MSCs derived from the bone marrow of a transgenic rat model of familial ALS (hSOD1(G93A)) were also characterised. Unexpectedly, cells from this rat strain submitted to the differentiation protocol showed modest capacity to take up aspartate and did not respond to the riluzole treatments. These data highlight the neuroprotective potential attributable to MSCs, supporting their use as valuable tools for the treatment of neurodegenerative disorders. However, the cells from the transgenic animal model of ALS appeared deficient in their capacity to gain the neuroprotective properties, raising questions regarding the suitability of autologous stem cell grafts in future therapies against familial forms of this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2008.04.030 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!