Matrix metalloproteinase 9 (MMP-9) plays a critical role in digesting the extracellular matrix and has a vital function in tumor metastasis and invasion; this protease activity is significantly increased in non-small cell lung cancers. The sodium hydrogen exchanger isoform 1 (NHE1) functions as a focal point for signal coordination and cytoskeletal reorganization. NHE1 is thought to play a central role in establishing signaling components at the leading edge of a migrating cell. Therefore, we studied the relationship between NHE1 and MMP-9 activity in Chinese hamster lung fibroblasts (CCL39) stimulated with phenylephrine (PE). We show that PE increases MMP-9 gelatinolytic activity in CCL39 cells. The inhibition of phospholipase D (PLD) signaling abrogated PE-induced MMP-9 activity. The role of PLD as an essential signaling intermediate was confirmed when the addition of permeable phosphatidic acid increased MMP-9 activity in the same cells. PE-induced invasion was increased 1.9-fold over controls and the PE response was lost when 1-butanol was used to block PLD signaling. Cells pre-treated with the NHE1 inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) prior to PE addition resulted in a notable decrease in MMP-9 activation and cell invasion as compared to untreated PE-stimulated cells. CCL39 NHE1 null cells demonstrated no increase in MMP-9 protease activity or cell invasion in response to PE treatment. Reconstitution of NHE1 expression recovered the PE-induced activation of protease activity and cell invasion. MMP-9 processing was altered in cells expressing a proton transport defective NHE1 but retained the ability to respond to PE. Conversely, cells expressing an ezrin, radixin, moesin (ERM)-binding deficient NHE1 had a lower MMP-9 activity and the protease did not respond to PE addition. Parallel studies on NCI-H358 non-small cell lung cancer (NSCL) cells showed that PE stimulated both MMP-9 activity and cell invasion in an NHE1 dependent manner. This work describes for the first time a PE-induced relationship between NHE1 and MMP-9 and a new potential mechanism by which NHE1 could promote tumor formation and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2008.05.007 | DOI Listing |
Neuropeptides
December 2024
Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China. Electronic address:
Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation.
View Article and Find Full Text PDFEur J Med Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China. Electronic address:
Nowadays, hybrid molecule with dual targets activity or effect is regarded as an effective strategy for combating the drug resistance development in cancer therapy. Herein, novel of bifunctional conjugates targeting tubulin and MMPs inhibitors were synthesized. Among them, 15j exhibited robust anticancer activity in vitro and in vivo, with IC values of 0.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Silibinin, a major compound of silymarin, has been reported to alleviate respiratory diseases including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis through its antifibrotic, anti-inflammatory, and antioxidant properties. However, the specific mechanisms underlying its therapeutic effects, particularly in allergic asthma, are not fully understood. With the increasing prevalence and impact of allergic asthma, there is a need to elucidate the exact underlying mechanisms of its potential treatment effects.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, Jiangsu, China.
This study attempted to explore the molecular mechanism of Epimedium herb (EH) on rheumatoid arthritis (RA) treatment. We employed network pharmacology, molecular docking, and HPLC analysis to investigate the molecular mechanisms underlying the efficacy of EH in treating RA. To assess the efficacy of EH intervention, RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) mouse models were utilized.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Medical Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran.
Oncolytic viral-based therapy and specific gene expression by promoters are modern targeted oncotherapy approaches that have gained significant attention in recent years. In this study, both strategies were combined by designing cancer-specific activation of vesicular stomatitis virus matrix expression under the survivin promoter. The matrix sequence was cloned downstream of the survivin promoter (pM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!