Voxel-based morphometry was used to compare brain structure of survivors of posterior fossa brain tumor (PFBT) with that of normal sibling controls to investigate disease- or cancer treatment-induced changes. Two different spatial normalization approaches that are available in public domain software (free-form deformation (FFD) and discrete cosine transform (DCT)) were compared for accuracy of normalization in the PFBT patients. Anatomical landmark matching demonstrated that spatial normalization was more accurate with FFD than with DCT. Voxel-based morphometry of the FFD-normalized magnetic resonance images from PFBT survivors and sibling controls detected reduced gray matter density in the thalamus and entorhinal cortex and reduced white matter density in the internal capsule, hypothalamus, corpus callosum, and cuneus of the occipital lobe in the PFBT survivors. Identification of these morphologic lesions may help localize the neural substrates of disease- or therapy-induced cognitive deficits in survivors of childhood cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2591023 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2008.04.181 | DOI Listing |
J Neurol
January 2025
Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
Background: Tourette syndrome (TS) is a prevalent neurodevelopmental disorder with an uncertain etiology. Numerous neuroimaging studies have investigated patients with TS, but their conclusions remain inconsistent. The current study attempted to provide an unbiased statistical meta-analysis of published neuroimaging studies of TS.
View Article and Find Full Text PDFPCN Rep
March 2025
Advanced Neuroimaging Center, Institute for Quantum Medical Science National Institutes for Quantum Science and Technology Chiba Japan.
Aim: Superiority illusion (SI), a cognitive bias where individuals perceive themselves as better than others, may serve as a psychological mechanism that contributes to well-being and resilience in older adults. However, the specific neural basis of SI in elderly populations remains underexplored. This study aims to identify brain regions partially associated with SI, exploring its potential role in adaptive psychological processes.
View Article and Find Full Text PDFBrain Commun
December 2024
Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK.
We investigated semantic cognition in the logopenic variant of primary progressive aphasia, including (i) the status of verbal and non-verbal semantic performance; and (ii) whether the semantic deficit reflects impaired semantic control. Our hypothesis that individuals with logopenic variant of primary progressive aphasia would exhibit semantic control impairments was motivated by the anatomical overlap between the temporoparietal atrophy typically associated with logopenic variant of primary progressive aphasia and lesions associated with post-stroke semantic aphasia and Wernicke's aphasia, which cause heteromodal semantic control impairments. We addressed the presence, type (semantic representation and semantic control; verbal and non-verbal), and progression of semantic deficits in logopenic variant of primary progressive aphasia.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Single-subject voxel-based morphometry (VBM) is a powerful technique for reader-independent detection of brain atrophy in structural magnetic resonance imaging (MRI) to support the (differential) diagnosis and staging of neurodegenerative diseases in individual patients. However, VBM is sensitive to the MRI scanner platform and details of the acquisition sequence. To mitigate this limitation, we recently proposed and validated a convolutional neural network (CNN)-based VBM which does not rely on a normative reference database.
View Article and Find Full Text PDFNeuroscience
January 2025
Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!