The endogenous steroid estrogen has been shown to affect neuronal growth, differentiation and survival. Genistein, daidzein and other isoflavones have been shown to mimic the pharmacological actions of the gonadal steroid estrogen with which they have structural similarities. Several studies have looked at the effect of isoflavones in the brain. In the present study, human cortical cell line HCN 1-A maintained in culture was used to test the neuroprotective efficacy of a natural mixture of phytoestrogenic isoflavones (genistein, daidzein, biochanin A and formononetin) from Red clover against glutamate toxicity. Neuronal viability was determined by MTT or trypan blue test and neuronal membrane damage was quantitatively measured by lactate dehydrogenase (LDH). The results obtained indicate that exposure of HCN 1-A cell cultures to glutamate resulted in concentration-dependent decreases in neuron viability. Concentration of glutamate ranging from 0.01 to 5 mM was toxic to these cultures. A 24-h pretreatment with 0.5, 1 and 2 microg/ml isoflavones enriched fraction (IEF) significantly increased cell survival and significantly decreased cellular lactate dehydrogenase release from differentiated cortical neurons, indicating that neurons treated with isoflavones were protected from the cell death induced by glutamate exposure. Moreover, the pretreatment with IEF prevented the morphological disruption caused by glutamate as shown by microscopical inspection. These findings indicate that IEF has a neuroprotective effect in human cortical neurons and that this effect might be resulted from his antioxidant and estrogenic actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2008.04.007DOI Listing

Publication Analysis

Top Keywords

human cortical
12
cortical neurons
12
phytoestrogenic isoflavones
8
red clover
8
glutamate toxicity
8
steroid estrogen
8
genistein daidzein
8
hcn 1-a
8
lactate dehydrogenase
8
glutamate
6

Similar Publications

Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain.

Nat Genet

January 2025

Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.

View Article and Find Full Text PDF

Research on interoception has revealed the role of heartbeats in shaping our perceptual awareness and embodying a first-person perspective. These heartbeat dynamics exhibit distinct responses to various types of touch. We advanced that those dynamics are directly associated to the brain activity that allows self-other distinction.

View Article and Find Full Text PDF

Motor cortical neuronal hyperexcitability associated with α-synuclein aggregation.

NPJ Parkinsons Dis

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.

ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!