In order to protect the sample and the tip against current transients in a scanning tunneling microscope, which in most cases damages the scanned surface and the tip, when using a bias higher than 1V, we have designed a simple and low-cost circuit that limits the tunneling current. During the evolution of the current transient, when the current exceeds a pre-determined value, a fast feedback control mechanism immediately reduces the bias and prevents the current transient from developing. In addition, we designed a fast pre-amplifier that works with this controller. We have shown that this mechanism provides a better scanning image compared to a system without such a mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2008.04.007DOI Listing

Publication Analysis

Top Keywords

scanning tunneling
8
tunneling microscope
8
current transient
8
current
5
automatic bias-reduction
4
bias-reduction controller
4
controller scanning
4
microscope order
4
order protect
4
protect sample
4

Similar Publications

We introduce a novel control mode for Scanning Tunneling Microscope (STM) that leverages di/dz feedback. By superimposing a high-frequency sinusoidal modulation on the control signal, we extract the amplitude of the resulting tunneling current to obtain a di/dz measurement as the tip is scanned over the surface. A feedback control loop is then closed to maintain a constant di/dz, enhancing the sensitivity of the tip to subtle surface variations throughout a scan.

View Article and Find Full Text PDF

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

Initial Carbonation of Ni(111) Surfaces.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.

Understanding the carbon formation on Ni surfaces is critical for the controlled Ni-based nanofabrication and heterogeneous catalysis. Due to the high solubility of carbon in nickel and the complicated migrations of carbon in the near-surface area, achieving a fundamental understanding of the initial carbonation of a Ni surface at an atomic level is experimentally challenging. Herein, the initial formation of surface carbon adsorbates on Ni(111) from the Boudouard reaction (2CO ↔ CO + C) is studied by scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Anion-Responsive π-Conjugated Macrocycles That Form Ordered Structures.

Chem Asian J

January 2025

Ritsumeikan University, Department of Applied Chemistry, College of Life Sciences, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.

In this study, anion-responsive π-conjugated macrocycles were synthesized to demonstrate anion-binding and ion-pairing properties along with the ordered structures.  Ion-pairing charge-by-charge assembly of a [1+2]-type complex of a macrocycle as a pseudo π-electronic anion and a countercation was revealed by single-crystal X-ray analysis.  Further, two-dimensional (2D) arrays of the macrocycles bearing alkoxy chains, exhibiting anion-driven disordered structures, were constructed on a highly oriented pyrolytic graphite (HOPG) substrate as observed by scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!