Standardizing GC-MS metabolomics.

J Chromatogr B Analyt Technol Biomed Life Sci

Metabolic Engineering and Systems Biology Laboratory, Department of Chemical and Biomolecular Engineering, University of Maryland, MD 20742, USA.

Published: August 2008

Metabolomics being the most recently introduced "omic" analytical platform is currently at its development phase. For the metabolomics to be broadly deployed to biological and clinical research and practice, issues regarding data validation and reproducibility need to be resolved. Gas chromatography-mass spectrometry (GC-MS) will remain integral part of the metabolomics laboratory. In this paper, the sources of biases in GC-MS metabolomics are discussed and experimental evidence for their occurrence and impact on the final results is provided. When available, methods to correct or account for these biases are presented towards the standardization of a systematic methodology for quantitative GC-MS metabolomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2008.04.049DOI Listing

Publication Analysis

Top Keywords

gc-ms metabolomics
12
metabolomics
6
standardizing gc-ms
4
metabolomics metabolomics
4
metabolomics introduced
4
introduced "omic"
4
"omic" analytical
4
analytical platform
4
platform currently
4
currently development
4

Similar Publications

is an important spice and medicinal plant widely utilized in East and Southeast Asia. Non-targeted metabolomics techniques were employed to study the variations in the content and composition of essential oil from during drying at different temperatures: 40°C, 50°C, 60°C, and 70°C. A total of 260 metabolites were detected using gas chromatography-mass spectrometry (GC-MS), mainly terpenoids and aldehydes.

View Article and Find Full Text PDF

A varietal origin of eugenol was previously demonstrated in Baco blanc, a major grapevine variety used to produce Armagnac wine spirits. Eugenol was found in high amount, both as the free and as unidentified glycosylated forms. To reveal their identity, a specific method was developed and applied to berry skin extracts.

View Article and Find Full Text PDF

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.

Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.

View Article and Find Full Text PDF

Correlating Microbial Dynamics with Key Metabolomic Profiles in Three Submerged Culture-Produced Vinegars.

Foods

December 2024

Department of Agricultural Chemistry, Edaphology, and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.

Although vinegar is a product obtained by a well-known bioprocess from a technical point of view, the complex microbiota responsible for its production and their involvement in the organoleptic profiles are not clear yet. In this work, three acetification profiles in submerged culture using both synthetic and raw materials from Andalusia (Spain) were characterized by metagenomic (16S rRNA amplicon sequencing) and metabolomic tools (stir-bar sorptive extraction with thermo-desorption coupled to gas chromatography-mass spectrometry (SBSE-TD-GC-MS) and high-performance liquid chromatography (HPLC)). A total of 29 phyla, 208 families, and many more genera were identified, comprising bacteria and archaea as well as 75 metabolites, including minor volatile compounds, amino acids, biogenic amines, and other nitrogenous compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!