Single chain antibody fragment genes are commonly created by splicing together the immunoglobulin light chain (VL) and heavy chain variable (VH) genes of a monoclonal antibody produced by a hybridoma. Selective PCR amplification of the functional immunoglobulin variable gene rearrangements can be complicated by the existence of other unproductive immunoglobulin gene rearrangements in the hybridoma. Here we report the detection and preferential amplification of aberrant transcripts from two unproductive VH gene rearrangements derived from the fusion partner of a hybridoma. The functional VH gene of the monoclonal antibody was successfully amplified by selective use of primers to individual JH segments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2008.04.014DOI Listing

Publication Analysis

Top Keywords

gene rearrangements
12
pcr amplification
8
amplification functional
8
functional immunoglobulin
8
heavy chain
8
chain variable
8
variable gene
8
aberrant transcripts
8
monoclonal antibody
8
gene
5

Similar Publications

The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.

View Article and Find Full Text PDF

Background: Primary squamous cell carcinoma (SCC) of the middle ear is rare, with non-keratinizing basaloid types being exceptionally uncommon. Distinguishing these cancers, often caused by viral factors (, human papillomavirus or Epstein-Barr virus), or specific genetic alterations (, bromodomain-containing protein 4-nuclear protein in or gene fused with FLI chromosomal rearrangement), from other cranial conditions, is difficult. The recently identified DEK::AFF2 non-keratinizing SCC (NKSCC) is a novel subtype, fitting the World Health Organization classification of head and neck neoplasms.

View Article and Find Full Text PDF

The green alga (formerly ) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the genome, further validated by Sanger sequencing of heterozygous regions.

View Article and Find Full Text PDF

This study explored the genomic alterations in , a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels.

View Article and Find Full Text PDF

Programming the elongation of mammalian cell aggregates with synthetic gene circuits.

bioRxiv

December 2024

Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

A key goal of synthetic morphogenesis is the identification and implementation of methods to control morphogenesis. One line of research is the use of synthetic genetic circuits guiding the self-organization of cell ensembles. This approach has led to several recent successes, including control of cellular rearrangements in 3D via control of cell-cell adhesion by user-designed artificial genetic circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!