Background: Our laboratory established that binge alcohol-related bone damage is prevented by aminobisphosphonates, suggesting bone resorption increases following binge exposure. We examined the effects of binge alcohol and antiresorptive therapy on the relationship between bone damage and modulation of the vertebral transcriptome, in an attempt to determine how alcohol-induced bone damage and its prevention modulate bone-related biological pathways.

Methods: Male Sprague-Dawley rats were assigned to 1 of 6 treatment groups (n = 12/group). (C1) saline ip 3 d/wk for 1 week, (A1) binge alcohol, 3 g/kg, ip 3 d/wk for 1 week, (C4) saline ip, 3 d/wk for 4 weeks, (A4) binge alcohol, ip, 3 g/kg 3 d/wk for 4 weeks, (I4) ibandronate, saline ip 3 d/wk for 4 weeks, plus a single ip injection of ibandronate at 120 microg/animal, and (AI4) binge alcohol plus ibandronate as above. After 1 or 4 weeks, adjacent lumbar vertebrae were assayed for bone damage or transcriptional changes.

Results: Bone loss was not observed after 1 week of binge alcohol treatment. After 4 weeks, binge alcohol decreased vertebral BMD by 23% (p < 0.05) and compressive strength by 18% compared to saline controls (p < 0.05). Concurrent ibandronate prevented bone loss, increasing these parameters by 145 and 134% respectively compared to binge alcohol. (p < 0.05). Analysis of the vertebral transcriptome identified gene clusters specific for acute and chronic binge alcohol-related bone damage. Acute binge alcohol modulated the expression of integrin signaling-specific genes, while chronic binge alcohol modulated canonical Wnt signaling gene expression. Ibandronate normalized the expression of approximately 20% of the genes affected by chronic binge alcohol, allowing the identification of a unique subset of alcohol-sensitive, ibandronate-responsive genes.

Conclusions: Identification of bone-specific gene expression clusters associated with acute and chronic binge alcohol treatment allowed for the identification of cellular pathways affected by binge treatment with known involvement in bone remodeling (Integrin, Canonical Wnt signaling) not previously identified as alcohol-sensitive. This data provides a basis for a plausible mechanistic explanation for the known detrimental effects of alcohol on bone formation and resorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728683PMC
http://dx.doi.org/10.1111/j.1530-0277.2008.00736.xDOI Listing

Publication Analysis

Top Keywords

binge alcohol
48
bone damage
20
binge
16
chronic binge
16
alcohol
13
saline d/wk
12
d/wk weeks
12
bone
10
alcohol ibandronate
8
binge alcohol-related
8

Similar Publications

Background: Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP.

View Article and Find Full Text PDF

BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use.

View Article and Find Full Text PDF

Background: The influence of alcohol use on later neurocognitive functioning is well researched, yet few studies have investigated whether neurocognition post-drinking initiation in adolescence predicts changes in later alcohol use.

Objective: Investigate neurocognitive task performance during maximum alcohol use in late adolescence as predictors of drinking behaviors 3-7 years later.

Methods: Analyses () were conducted on a longitudinal dataset involving adolescents (12-13 years-old) who were followed for 16 years.

View Article and Find Full Text PDF

Alcohol-induced liver injury is mediated via α4-containing nicotinic acetylcholine receptors expressed in hepatocytes.

Alcohol Clin Exp Res (Hoboken)

January 2025

Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.

Background: Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver.

Methods: Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!