beta-Adrenergic receptor (beta-AR)-induced cardiac remodeling is closely linked with the re-expression of the atrial natriuretic factor (ANF) gene. However, the exact molecular mechanism of this response remains elusive. Here, we demonstrate that the beta-AR agonist isoproterenol potently evokes the tyrosine phosphorylation of STAT3 and increases its transcriptional activity in an extracellularly regulated kinase 1/2 and glycoprotein (gp)130 signaling-dependent manner in rat cardiomyocytes. Interestingly, both specific silencing of signal transducers and activators of transcription 3 (STAT3) expression by lentivirus-mediated RNA interference and antagonism of gp130 signaling lead to significant inhibition of isoproterenol-stimulated ANF expression. Together, these results indicate that gp130/STAT3 signaling has an essential role in ANF expression by beta-AR stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2008.06504.xDOI Listing

Publication Analysis

Top Keywords

gp130/stat3 signaling
8
atrial natriuretic
8
natriuretic factor
8
anf expression
8
signaling pathway
4
pathway mediates
4
mediates beta-adrenergic
4
beta-adrenergic receptor-induced
4
receptor-induced atrial
4
expression
4

Similar Publications

Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be frequently co-expressed in HER2-enriched breast cancer and triple-negative breast cancer (TNBC), undergo protein-protein interactions for gene regulation and activation, and functionally cooperate to promote breast CSCs. STAT3 can be activated by activated interleukin-6 receptor/glycoprotein-130 (IL-6R/GP130).

View Article and Find Full Text PDF

The signal transducer and activator of transcription 3 (STAT3) protein is a key regulator of cell differentiation, proliferation, and survival in hematopoiesis, immune responses, and other biological systems. STAT3 transcriptional activity is strictly regulated through various mechanisms, such as phosphorylation and dephosphorylation. In this study, we attempted to identify novel phosphatases which regulate STAT3 activity in response to cytokine stimulations.

View Article and Find Full Text PDF

The IL6-GP130-STAT3 pathway facilitates lung cancer progression and resistance to tyrosine kinase inhibitors. Although glycosylation alters the stability of GP130, its effect on the ligand IL6 remains unclear. We herein find that N-glycosylated IL6, especially at Asn73, primarily stimulates JAK-STAT3 signaling and prolongs STAT3 phosphorylation, whereas N-glycosylation-defective IL6 (deNG-IL6) induces shortened STAT3 activation and alters the downstream signaling preference for the SRC-YAP-SOX2 axis.

View Article and Find Full Text PDF

Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2).

View Article and Find Full Text PDF

Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!