G-protein coupled receptors (GPCRs) are a large family of receptors for a wide range of stimulants, including hormones, neurotransmitters, and taste and olfactory chemicals. Due to their broad involvement in cellular responses, GPCRs affect many important body functions both in health and disease. Compared to other receptor families, the GPCRs have been a rich source of extracellularly-acting pharmaceuticals, due largely to the fact that many GPCR ligands are small molecules when compared with ligands for other receptors, such as the tyrosine kinase receptor family. This has allowed the development of small molecule modulators of receptor function that act on specific GPCRs, such as those involved in cardiovascular regulation. However, at several levels, current screening technologies of drug development for GPCRs are lacking. Firstly, responses from many GPCRs, such as the Gi-coupled GPCRs, are not easily measured in large screening programs by current techniques. Secondly, there are few options for detecting agonists of orphan GPCRs. Thirdly, it is now clear that the signaling from GPCRs is more complex than once thought, and the measurement of Ca(2+) and cAMP can account for only a fraction of the biological information emanating from an activated GPCR. Studies of the discrete and sometimes separable activation of the Ras/Raf/Mek/ERK cascade by many GPCRs is likely to offer development of new agonists and antagonists, contribute to new pharmacologies from receptors, and raise the potential for novel drug candidates in this important area of biology. Downstream activation of the ERK pathway, with or without transactivation of growth factor receptors, has not been measurable by high throughput methodologies. This article presents recent advances and associated applications for screening of GPCRs and other receptor species through the rapid measurement of protein phosphorylation events, such as ERK phosphorylation, as new readouts for drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138620708784534806 | DOI Listing |
J Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFJ Struct Biol
January 2025
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. Electronic address:
Arrestins halt cell signaling by binding to phosphorylated activated G protein-coupled receptors. Arrestin-1 binds to rhodopsin, arrestin-4 binds to cone opsins, and arrestins-2,3 bind to the rest of GPCRs. In addition, it has been reported that arrestin-1 is functionally expressed in mouse cone photoreceptors.
View Article and Find Full Text PDFAndrology
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.
View Article and Find Full Text PDFNature
January 2025
Department of Genetics, Stanford University, Stanford, CA, USA.
Biochim Biophys Acta Rev Cancer
January 2025
National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China. Electronic address:
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a crucial role in signal transduction and cellular communication. GPCR proteins are involved in a wide range of physiological processes, including cell growth, migration, and survival. Dysregulation of GPCR protein expression has been implicated in the pathogenesis of various diseases, including cancer, and GPCR proteins have been shown to modulate these processes in various types of cancer, highlighting their importance as potential therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!