The structural properties of linear polyelectrolyte solutions in the presence of a salt as evidenced through ionic correlations in the inhomogeneous atmosphere around a polyion and their consequence such as the catalytic potential are studied by using Monte Carlo simulation techniques. The simulations are performed on the cylindrical cell model where a uniformly charged hard cylinder mimics the linear polyion, which is caged in its own cylindrical cell containing counterions and salt. The cell (volume) average of the interionic correlations is presented as a function of the polyion and salt concentrations and ion radius. These results are utilized to study the catalytic effects of polyions as manifested through the changes in the collision frequency between ions in the double layer surrounding the polyion relative to that in the pure electrolyte solution. The reported results suggest a strong influence of the added salt/polyelectrolyte concentration ratio on the structural properties of the solution and hence on ion-ion collision frequency. The machine simulations are supplemented by nonlinear Poisson-Boltzmann results. Fair agreement between two different theoretical methods of calculating the collision frequency is obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2919134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!