Natamycin production by Streptomyces gilvosporeus based on statistical optimization.

J Agric Food Chem

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, 29 Thirteenth Avenue, TEDA, Tianjin 300457, China.

Published: July 2008

Natamycin has been widely used as a natural preservative to prevent mold contamination in food. In this study, statistically based experimental designs were employed for the optimization of medium components for natamycin production by Streptomyces gilvosporeus. After glucose, yeast extract, and soy peptone were screened as suitable carbon and nitrogen sources, a full factorial design was used to evaluate the effects of various factors on natamycin production. Glucose and pH were identified as having significant effects (with confidence level >90%). Glucose concentration and initial pH were subsequently optimized by use of a central composite design. The result indicated that glucose and pH had a significant interactive effect on natamycin production. The optimal glucose concentration and initial pH value were 38.2 g/L and 7.8, respectively. This optimization strategy led to a natamycin yield of 2.45 g/L, which was nearly 90% higher than that in the original medium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf800479uDOI Listing

Publication Analysis

Top Keywords

natamycin production
16
production streptomyces
8
streptomyces gilvosporeus
8
glucose concentration
8
concentration initial
8
natamycin
6
glucose
5
gilvosporeus based
4
based statistical
4
statistical optimization
4

Similar Publications

Food preservatives are essential for maintaining the safety and quality of food products. Nisin and natamycin are natural food preservatives extensively used in the food industry to enhance various food products' shelf life and safety. Nisin, a polycyclic antibacterial peptide, is effective against a broad spectrum of Gram-positive bacteria, including foodborne pathogens and spoilage organisms.

View Article and Find Full Text PDF

Biocontrol potential of natamycin-producing Streptomyces lydicus JCK-6019 against soil-borne fungal diseases of cucumber and characterization of its biocontrol mechanism.

Pest Manag Sci

December 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea.

Background: Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani AG-4 are the two most important fungal pathogens causing soil-borne fungal diseases of cucumber; they are difficult to control and cause serious economic losses.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates using macrophage membrane-coated nanoparticles to safely deliver natamycin for treating fungal keratitis, highlighting their effectiveness against the infection.
  • The nanoparticles, made from poly(lactic-glycolic acid) and macrophage membranes, exhibited a core-shell structure and showed favorable drug encapsulation and release properties.
  • Results demonstrate improved antifungal activity and reduced ocular toxicity, with notable success in alleviating infection severity in live models.
View Article and Find Full Text PDF

Unlabelled: L-valine (L-Val) was previously confirmed to promote natamycin biosynthesis in HW-2. In this study, natamycin yield was 1.9-fold increase with 0.

View Article and Find Full Text PDF

Background: Codonopsis pilosula var. modesta (CPVM) is a famous medicinal and edible plant of Campanulaceae. However, fresh CPVM roots (FCPVR) are prone to softening, browning and spoilage after concentrated harvesting in the main production area of Gansu Province, China in autumn, which poses great challenges to their large-scale storage and modern processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!