A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. | LitMetric

The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb1743DOI Listing

Publication Analysis

Top Keywords

dna damage
16
hipk2 stability
8
ubiquitin ligase
8
ligase siah-1
8
hipk2
8
disruption hipk2-siah-1
8
hipk2-siah-1 complex
8
siah-1
6
damage
5
control hipk2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!