Plasma membrane potentials gate the ion channel conductance that controls external signal-induced neuronal functions. We found that diffusible guidance molecules caused membrane potential shifts that resulted in repulsion or attraction of Xenopus laevis spinal neuron growth cones. The repellents Sema3A and Slit2 caused hyperpolarization, and the attractants netrin-1 and BDNF caused depolarization. Clamping the growth-cone potential at the resting state prevented Sema3A-induced repulsion; depolarizing potentials converted the repulsion to attraction, whereas hyperpolarizing potentials had no effect. Sema3A increased the intracellular concentration of guanosine 3',5'-cyclic monophosphate ([cGMP]i) by soluble guanylyl cyclase, resulting in fast onset and long-lasting hyperpolarization. Pharmacological increase of [cGMP](i) caused protein kinase G (PKG)-mediated depolarization, switching Sema3A-induced repulsion to attraction. This bimodal switch required activation of either Cl(-) or Na+ channels, which, in turn, regulated the differential intracellular Ca2+ concentration increase across the growth cone. Thus, the polarity of growth-cone potential shifts imposes either attraction or repulsion, and Sema3A achieves this through cGMP signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn.2130 | DOI Listing |
ACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.
View Article and Find Full Text PDFEur Stroke J
January 2025
Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain.
Introduction: The efficacy of intracranial rescue stenting (RS) following failed mechanical thrombectomy (MT) in large-vessel occlusion (LVO) stroke remains uncertain. We aimed to evaluate clinical outcomes of RS in patients with anterior circulation LVO stroke following unsuccessful MT.
Patients And Methods: We conducted a retrospective analysis using the Stroke Code Registry of Catalonia (January 2016-March 2022), a prospective, population-based registry including patients treated at 10 comprehensive stroke centers.
Front Immunol
January 2025
Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Background: Radical cystectomy (RC) combined with pelvic lymph node dissection (PLND) is the standard treatment for muscle-invasive bladder cancer (MIBC). For metastatic MIBC patients, platinum-based chemotherapy remains the first choice treatment. However, approximately 50% of patients with metastatic MIBC are ineligible for platinum-based adjuvant chemotherapy because of impaired renal function.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China.
Few-shot learning (FSL) methods have made remarkable progress in the field of plant disease recognition, especially in scenarios with limited available samples. However, current FSL approaches are usually limited to a restrictive setting where base classes and novel classes come from the same domain such as PlantVillage. Consequently, when the model is generalized to new domains (field disease datasets), its performance drops sharply.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Bari, Italy.
In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!