A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Investigation of electrocatalytic reduction of oxalic acid on Pb electrode through in situ FTIR reflection spectroscopy]. | LitMetric

[Investigation of electrocatalytic reduction of oxalic acid on Pb electrode through in situ FTIR reflection spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi

State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Institute of Physical Chemistry, Xiamen University, Xiamen 361005, China.

Published: March 2008

Electrochemical in situ Fourier transform infrared reflection spectroscopy was used in the investigation of electrocatalytic reduction of oxalic acid on Pb electrode. The multi-step potential FTIRS and time-resolved FTIRS procedures were used in the present study. The results of MSFTIRS demonstrate that glyoxylic acid could be detected below -0.70 V. The quantity of glyoxylic acid cumulated on Pb electrode surface reaches a maximum at -0.85 V, then it decreases as electrode potential is further decreased. Meanwhile the C-O stretching vibration of -CH2OH group at around 1 093 cm(-1) could be detected at -0.95 V. It was revealed that all the produced glyoxylic acid may be reduced further into glycolic acid at potentials below -1.50 V. Furthermore, none of other new substances could be detected at more negative potentials, which indicated that glycolic acid could not be further reduced. The results of time resolved Fourier transform infrared reflection spectroscopy at -0.75 V indicate that the integrated intensity of the IR band at about 1 750 cm(-1) for the stretching vibration of C=O (-CHO) linearly increases with the reaction time. The TRFTIR spectra at -1.60 V show that not only the IR absorption of C=O (HOOC-CHO) stretching is observed, but also that of C-O (-CH2OH) stretching at about 1 093 cm(-1) can be seen. The current study demonstrated that electrochemical in situ Fourier transform infrared reflection spectroscopy is a powerful tool for the study of electrosynthesis processes, and for the detection of each species involved in the reaction at molecular level. The results are of significance to understand the reaction mechanism of electrocatalytic reduction of oxalic acid.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrocatalytic reduction
12
reduction oxalic
12
oxalic acid
12
fourier transform
12
transform infrared
12
infrared reflection
12
reflection spectroscopy
12
glyoxylic acid
12
acid
8
acid electrode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!