Multiple host barriers restrict poliovirus trafficking in mice.

PLoS Pathog

Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.

Published: June 2008

RNA viruses such as poliovirus have high mutation rates, and a diverse viral population is likely required for full virulence. We previously identified limitations on poliovirus spread after peripheral injection of mice expressing the human poliovirus receptor (PVR), and we hypothesized that the host interferon response may contribute to the viral bottlenecks. Here, we examined poliovirus population bottlenecks in PVR mice and in PVR mice that lack the interferon alpha/beta receptor (PVR-IFNAR-/-), an important component of innate immunity. To monitor population dynamics, we developed a pool of ten marked polioviruses discriminated by a novel hybridization-based assay. Following intramuscular or intraperitoneal injection of the ten-virus pool, a major bottleneck was observed during transit to the brain in PVR mice, but was absent in PVR-IFNAR-/- mice, suggesting that the interferon response was a determinant of the peripheral site-to-brain bottleneck. Since poliovirus infects humans by the fecal-oral route, we tested whether bottlenecks exist after oral inoculation of PVR-IFNAR-/- mice. Despite the lack of a bottleneck following peripheral injection of PVR-IFNAR-/- mice, we identified major bottlenecks in orally inoculated animals, suggesting physical barriers may contribute to the oral bottlenecks. Interestingly, two of the three major bottlenecks we identified were partially overcome by pre-treating mice with dextran sulfate sodium, which damages the colonic epithelium. Overall, we found that viral trafficking from the gut to other body sites, including the CNS, is a very dynamic, stochastic process. We propose that multiple host barriers and the resulting limited poliovirus population diversity may help explain the rare occurrence of viral CNS invasion and paralytic poliomyelitis. These natural host barriers are likely to play a role in limiting the spread of many microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390757PMC
http://dx.doi.org/10.1371/journal.ppat.1000082DOI Listing

Publication Analysis

Top Keywords

host barriers
12
pvr mice
12
pvr-ifnar-/- mice
12
mice
9
multiple host
8
peripheral injection
8
interferon response
8
poliovirus population
8
major bottlenecks
8
poliovirus
7

Similar Publications

Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Attachment to Meat and Willingness Towards Cultured Alternatives Among Consumers: A Cross-Sectional Study in the UAE.

Nutrients

December 2024

Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

: The escalating global demand for meat, as a sequela of population growth, has led to unsustainable livestock production, resulting in a host of environmental and food security concerns. Various strategies have been explored to mitigate these issues, including the introduction of a novel food product, cultured meat. Cultured meat is not yet commercially available, yet public perceptions are already taking shape.

View Article and Find Full Text PDF

Transcriptomic profiling of chronic hand eczema skin reveals shared immune pathways and molecular drivers across subtypes.

J Allergy Clin Immunol

January 2025

The National Allergy Research Centre, Department of Dermatology and Allergy, Copenhagen University Hospital, Herlev-Gentofte, Hellerup, Denmark.

Background: Chronic hand eczema (CHE) is a common skin disease with different subtypes, but knowledge of the molecular patterns associated with each subtype is limited.

Objective: To characterize the CHE transcriptome across subtypes.

Methods: Using RNA-sequencing, we studied the transcriptome of 220 full-thickness skin biopsies collected from palms, dorsa, and arms from 96 patients with CHE and/or atopic dermatitis (AD) and 32 healthy controls.

View Article and Find Full Text PDF

Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen.

PLoS Pathog

January 2025

Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.

Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!