Retinoid-related orphan receptors (RORs), including the alpha, beta and gamma isoforms (NR1F1-3), are orphan nuclear receptors that have been implicated in tissue development, immune responses, and circadian rhythm. Although RORalpha and RORgamma have been shown to be expressed in the liver, the hepatic function of these two RORs remains unknown. We have recently shown that loss of RORalpha and/or RORgamma can positively or negatively influence the expression of multiple Phase I and Phase II drug metabolizing enzymes and transporters in the liver. Among ROR responsive genes, we identified oxysterol 7alpha-hydroxylase (Cyp7b1), which plays a critical role in the homeostasis of cholesterol, as a RORalpha target gene. We showed that RORalpha is both necessary and sufficient for Cyp7b1 activation. Studies of mice deficient of RORalpha or liver X receptors (LXRs) revealed an interesting and potentially important functional crosstalk between RORalpha and LXR. The respective activation of LXR target genes and ROR target genes in RORalpha null mice and LXR null mice led to our hypothesis that these two receptors are mutually suppressive in vivo. LXRs have been shown to regulate a battery of metabolic genes. We conclude that RORs participate in the xeno- and endobiotic regulatory network by regulating gene expression directly or through crosstalk with LXR, which may have broad implications in metabolic homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658633 | PMC |
http://dx.doi.org/10.3181/0802-MR-50 | DOI Listing |
J Oral Biosci
January 2025
Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea. Electronic address:
Objectives: We investigated the involvement of FOXO3a in lipopolysaccharide (LPS)-induced inflammation in primary human dental pulp cells (HDPCs).
Methods: HDPCs that were isolated from donors undergoing tooth extraction for orthodontic purposes were cultured with or without 1 μg/mL LPS at various intervals. The FOXO3a localization in the HDPCs was verified using immunofluorescence.
Sci Rep
January 2025
Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology; Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou, 510180, China.
Osteoarthritis (OA) is a multi-factorial degenerative joint disease with unclear pathogenesis. Conservative treatments, primarily aimed at pain relief, fail to halt disease progression. Metabolic syndrome has recently been implicated in OA pathogenesis, underscoring the need for novel therapeutic strategies.
View Article and Find Full Text PDFCell Immunol
February 2025
Department of Biochemistry, AIIMS, New Delhi, India. Electronic address:
Innate Lymphoid cells (ILCs) are innate counterparts of helper T cells. Although low in number, they have proven to play major roles in many autoimmune diseases. In Pemphigus Vulgaris (PV), the gaps in the knowledge of functional role of ILCs remain.
View Article and Find Full Text PDFJ Anim Sci
December 2024
Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Lipopolysaccharide (LPS) exposure triggers pulmonary inflammation, leading to compromised lung function in broiler. As amplified by policy restrictions on antibiotic usage, seeking antibiotic alternatives has become imperative. Mogroside V (MGV) has been reported to have a beneficial role in livestock and poultry production due to its remarkable anti-inflammatory effects.
View Article and Find Full Text PDFGenet Med
December 2024
Genetics Department, Hospices Civils de Lyon, Lyon, France; Neuromyogene Institute, Pathology and Genetics of neuron and muscle, CNRS UMR 5261 INSERM U1315, University of Lyon - Université Claude Bernard Lyon 1, Lyon, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!