Further characterization of cation channels present in the chicken red blood cell membrane.

Bioelectrochemistry

UMR 7150, Université Pierre and Marie Curie, CNRS Mer et Santé, Station Biologique de Roscoff, Place G. Teissier, Roscoff, France.

Published: August 2008

In this paper, we provide an update on cation channels in nucleated chicken erythrocytes. Patch-clamp techniques were used to further characterize the two different types of cation channels present in the membrane of chicken red blood. In the whole-cell mode, with Ringer in the bath and internal K+ saline in the pipette solution, the membrane conductance was generated by cationic currents, since the reversal potential was shifted toward cations equilibrium when the impermeant cation NMDG was substituted to small cations. The membrane conductance could be increased by application of mechanical deformation or by the addition of agonists of the cAMP-dependent pathway. At the unitary level, two different types of cationic channels were revealed and could account for the cationic conductance observed in whole-cell configuration. One of them belongs to the family of stretch-activated cationic channel showing changes in activity under conditions of membrane deformation, whereas the second one belongs to the family of the cAMP activated cationic channels. These two channels could be distinguished according to their unitary conductances and drug sensitivities. The stretch-activated channel was sensitive to Gd(3+) and the cAMP-dependent channel was sensitive to flufenamic acid. Possible role of these channels in cell volume regulation process is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2008.04.003DOI Listing

Publication Analysis

Top Keywords

cation channels
12
chicken red
8
red blood
8
membrane conductance
8
cationic channels
8
belongs family
8
channel sensitive
8
channels
7
membrane
5
cationic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!