The biofilm-forming capacity of Staphylococcus aureus contributes to antibiotic resistance, but whether antibiotic-resistant strains have the capacity to form biofilms has not yet been determined. Therefore, we recovered 101 clinical isolates of S. aureus and performed antibiotic susceptibility testing for 30 antibiotics using a VITEK II automatic system. We then carried out a biofilm assay on 96-well polystyrene plates. In addition, the presence of IS256 involved in the variation of biofilm phases of S. aureus was determined by polymerase chain reaction. The prevalence of IS256 was significantly related to multidrug resistance as well as biofilm expression, with biofilm positivity in 27 (39.7%) of the 68 IS256-positive strains and 3 (9.1%) of the 33 IS256-negative strains. In our analysis of the relationship between meticillin resistance and biofilm formation, we found that the rate of biofilm positivity was 37.9% (25/66) for meticillin-resistant strains and 14.3% (5/35) for meticillin-susceptible strains (P<0.05). Staphylococcal cassette chromosome mec (SCCmec) typing found that SCCmec type IV was most prevalent, comprising 14 (56.0%) of the 25 biofilm-positive, meticillin-resistant strains. A statistical analysis testing the relationship between multidrug resistance and biofilm formation revealed a significantly higher rate of biofilm development in strains with greater multiresistance compared with strains with less multiresistance. Our results suggest that the multidrug-resistant clinical isolates of S. aureus have a greater likelihood of developing biofilms on medical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2008.02.009 | DOI Listing |
Lett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFSci Rep
January 2025
Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022, India. Electronic address:
Int J Biol Macromol
January 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China. Electronic address:
Bacterial infections impede skin wound healing, and antibacterial hydrogels have garnered significant attention in the field of wound care due to their combined therapeutic effects. In this study, an intelligent, responsive AC-Gel@Cur-Au hydrogel was developed using temperature-sensitive agarose and pH-responsive chitosan as the structural framework, infused with Gel@Cur and AuNR. The AC-Gel@Cur-Au hydrogels demonstrated excellent mechanical properties, swelling capacity, tissue adhesion, and biodegradability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.
Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!