Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Breast cancers that overexpress the human epidermal growth factor receptor 2 (HER2) are eligible for effective biologically targeted therapies, such as trastuzumab. However, accurately determining HER2 overexpression, especially in immunohistochemically equivocal cases, remains a challenge. Manual analysis of HER2 expression is dependent on the assessment of membrane staining as well as comparisons with positive controls. In spite of the strides that have been made to standardize the assessment process, intra- and inter-observer discrepancies in scoring is not uncommon. In this manuscript we describe a pathologist assisted, computer-based continuous scoring approach for increasing the precision and reproducibility of assessing imaged breast tissue specimens.
Methods: Computer-assisted analysis on HER2 IHC is compared with manual scoring and fluorescence in situ hybridization results on a test set of 99 digitally imaged breast cancer cases enriched with equivocally scored (2+) cases. Image features are generated based on the staining profile of the positive control tissue and pixels delineated by a newly developed Membrane Isolation Algorithm. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis.
Results: A computer-aided diagnostic approach has been developed using a membrane isolation algorithm and quantitative use of positive immunostaining controls. By incorporating internal positive controls into feature analysis a greater Area Under the Curve (AUC) in ROC analysis was achieved than feature analysis without positive controls. Evaluation of HER2 immunostaining that utilized membrane pixels, controls, and percent area stained showed significantly greater AUC than manual scoring, and significantly less false positive rate when used to evaluate immunohistochemically equivocal cases.
Conclusion: It has been shown that by incorporating both a membrane isolation algorithm and analysis of known positive controls a computer-assisted diagnostic algorithm was developed that can reproducibly score HER2 status in IHC stained clinical breast cancer specimens. For equivocal scoring cases, this approach performed better than standard manual evaluation as assessed by ROC analysis in our test samples. Finally, there exists potential for utilizing image-analysis techniques for improving HER2 scoring at the immunohistochemically equivocal range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447833 | PMC |
http://dx.doi.org/10.1186/1471-2342-8-11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!