Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The major feature of the plant-growth-promoting bacteria Azospirillum brasilense is its ability to modify plant root architecture. In plants, nitric oxide (NO) mediates indole-3-acetic acid (IAA)-signaling pathways leading to both lateral (LR) and adventitious (AR) root formation. Here, we analyzed aerobic NO production by A. brasilense Sp245 wild type (wt) and its mutants Faj009 (IAA-attenuated) and Faj164 (periplasmic nitrate reductase negative), and its correlation with tomato root-growth-promoting effects. The wt and Faj009 strains produced 120 nmol NO per gram of bacteria in aerated nitrate-containing medium. In contrast, Faj164 produced 5.6 nmol NO per gram of bacteria, indicating that aerobic denitrification could be considered an important source of NO. Inoculation of tomato (Solanum lycopersicum Mill.) seedlings with both wt and Faj009 induced LR and AR development. In contrast, Faj164 mutant was not able to promote LR or AR when seedlings grew in nitrate. When NO was removed with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), both LR and AR formation were inhibited, providing evidence that NO mediated Azospirillum-induced root branching. These results show that aerobic NO synthesis in A. brasilense could be achieved by different pathways and give evidence for an NO-dependent promoting activity on tomato root branching regardless of bacterial capacity for IAA synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-21-7-1001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!