A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. | LitMetric

Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.

J Chem Inf Model

Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku-cho, Toyohashi 441-8580, Japan.

Published: June 2008

Aiming at the prediction of pleiotropic effects of drugs, we have investigated the multilabel classification of drugs that have one or more of 100 different kinds of activity labels. Structural feature representation of each drug molecule was based on the topological fragment spectra method, which was proposed in our previous work. Support vector machine (SVM) was used for the classification and the prediction of their activity classes. Multilabel classification was carried out by a set of the SVM classifiers. The collective SVM classifiers were trained with a training set of 59,180 compounds and validated by another set (validation set) of 29,590 compounds. For a test set that consists of 9,864 compounds, the classifiers correctly classified 80.8% of the drugs into their own active classes. The SVM classifiers also successfully performed predictions of the activity spectra for multilabel compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci7004753DOI Listing

Publication Analysis

Top Keywords

svm classifiers
12
support vector
8
multilabel classification
8
set
5
predictive activity
4
activity profiling
4
drugs
4
profiling drugs
4
drugs topological-fragment-spectra-based
4
topological-fragment-spectra-based support
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!