The dentate gyrus is one of the few brain regions that show proliferation of neuronal precursors postnatally and in adult life. Proliferation in the dentate gyrus has been shown to be influenced by exercise, stress and drugs such as antidepressants. Traditionally, proliferation studies rely on the time consuming and subjective manual count of labeled cells. Here we adapted the Metamorph software to automatically count cells labeled in the S phase in the developing dentate gyrus of mice. The validity of the computer-assisted method was established by showing an outcome similar to that obtained with the established manual counting procedure. In addition, by using a genetically modified mouse line with increased proliferation, the ability of the computer-assisted method to detect changes in proliferation was demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577072PMC
http://dx.doi.org/10.1016/j.jneumeth.2008.04.016DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
12
counting procedure
8
computer-assisted method
8
proliferation
5
validation computer-assisted
4
computer-assisted counting
4
procedure quantify
4
quantify brdu-labeled
4
brdu-labeled proliferating
4
proliferating cells
4

Similar Publications

Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging.

J Neuroinflammation

January 2025

Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

Neurodegenerative Tauopathies are a part of several neurological disorders and aging-related diseases including, but not limited to, Alzheimer's Disease, Frontotemporal Dementia with Parkinsonism, and Chronic Traumatic Encephalopathy. The major hallmarks present in these conditions include Tau pathology (composed of hyperphosphorylated Tau tangles) and synaptic loss. in vivo studies linking Tau pathology and mitochondrial alterations at the synapse, an avenue that could lead to synaptic loss, remain predominantly scarce.

View Article and Find Full Text PDF

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!