Misfolding of the prion protein: linking biophysical and biological approaches.

Vet Res

Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, F-78352 Jouy-en-Josas, France.

Published: November 2008

Prion diseases are a group of neurodegenerative diseases that can arise spontaneously, be inherited, or acquired by infection in mammals. The propensity of the prion protein to adopt different structures is a clue to its pathological and perhaps biological role too. While the normal monomeric PrP is well characterized, the misfolded conformations responsible for neurodegeneration remain elusive despite progress in this field. Both structural dynamics and physico-chemical approaches are thus fundamental for a better knowledge of the molecular basis of this pathology. Indeed, multiple misfolding pathways combined with extensive posttranslational modifications of PrP and probable interaction(s) with cofactors call for a combination of approaches. In this review, we outline the current physico-chemical knowledge explaining the conformational diversities of PrP in relation with postulated or putative cellular partners such as proteic or non-proteic ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1051/vetres:2008025DOI Listing

Publication Analysis

Top Keywords

prion protein
8
misfolding prion
4
protein linking
4
linking biophysical
4
biophysical biological
4
biological approaches
4
approaches prion
4
prion diseases
4
diseases group
4
group neurodegenerative
4

Similar Publications

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Prion diseases, particularly sporadic cases, pose a challenge due to their complex nature and heterogeneity. The underlying mechanism of the spontaneous conversion from PrPC to PrPSc, the hallmark of prion diseases, remains elusive. To shed light on this process and the involvement of cofactors, we have developed an in vitro system that faithfully mimics spontaneous prion misfolding using minimal components.

View Article and Find Full Text PDF

Cell-Based Meat Safety and Regulatory Approaches: A Comprehensive Review.

Food Sci Anim Resour

January 2025

Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea.

Cell-based meat (CBM) technology is a highly promising alternative to traditional animal agriculture, with considerable advantages in terms of sustainability, animal welfare, and food security. Nonetheless, CBM's successful commercialization is dependent on efficiently dealing with several critical concerns, including ensuring biological, chemical, and nutritional safety as well as navigating the global regulatory framework. To ensure CBM's biological safety, detecting and mitigating any potential hazards introduced during the manufacturing process is crucial.

View Article and Find Full Text PDF

Unlocking Neuroinflammation: A Balanced Art for Therapeutics of Prion Disease.

ACS Chem Neurosci

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

Neuroinflammation plays a dual role in prion diseases, contributing both to the clearance of misfolded scrapie-like prion protein and to neuropathology through chronic activation of inflammatory pathways. Key mechanisms, including M-CSF/CSF1R signaling, NLRP3 inflammasome activation, and the Galectin-3/TREM2 axis, etc., highlight the complexity of targeting neuroinflammation for therapeutic intervention.

View Article and Find Full Text PDF

Connectome-based biophysical models of pathological protein spreading in neurodegenerative diseases.

PLoS Comput Biol

January 2025

Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.

Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!