The excited-state symmetry and molecular reorientation of perylene, 1,7-diazaperylene, and 2,5,8,11-tetra- tert-butylperylene have been studied by different fluorescence depolarization experiments. The first excited electronic singlet state was reached through one-photon excitation (OPE) and two-photon excitation (TPE). A 400 and 800 nm femtosecond laser pulse was used for this purpose, and data were collected by means of the time-correlated single-photon counting technique. It is found that the rotational correlation times for each perylene derivative are very similar in the OPE and TPE depolarization experiments. For the determination of the two-photon absorption tensor, a recently described theoretical model has been applied (Ryderfors et al. J. Phys. Chem. A 2007, 111, 11531). It was found that the two-photon process can be described by a 2 x 2 absorption tensor for which the components are solvent dependent and exhibit mixed vibronic character. In the dipole approximation this is compatible with a parity-forbidden two-photon absorption into the first excited singlet state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp8015694 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia.
Recently (Photochem Photobiol. 2023;100:1277-1289. doi:10.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Volgograd State University, University Avenue 100, Volgograd 400062, Russia.
The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway.
Coupled cluster theory in the standard formulation is unable to correctly describe conical intersections among states of the same symmetry. This limitation has restricted the practical application of an otherwise highly accurate electronic structure model, particularly in nonadiabatic dynamics. Recently, the intersection problem among the excited states was fully characterized and resolved.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China.
The exploration of circularly polarized luminescence is important for advancing display and lighting technologies. Herein, by utilizing isomeric molecular engineering, a novel series of chiral molecules are designed to exploit both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) mechanisms for efficient luminescence. The cooperation of a small singlet-triplet energy gap, moderate spin-orbital coupling (SOC), and large oscillator strength enables efficient TADF emission, with photoluminescence quantum yields exceeding 90 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!