Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synthetic methods have been developed to generate the complete series of resonance-stabilized heterocyclic thia/selenazyl radicals 1a-4a. X-ray crystallographic studies confirm that all four radicals are isostructural, belonging to the tetragonal space group P42(1)m. The crystal structures consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular E2---E2' contacts. Variable temperature conductivity (sigma) measurements reveal an increase in conductivity with increasing selenium content, particularly so when selenium occupies the E2 position, with sigma(300 K) reaching a maximum (for E1 = E2 = Se) of 3.0 x 10(-4) S cm(-1). Thermal activation energies E(act) follow a similar profile, decreasing with increasing selenium content along the series 1a (0.43 eV), 3a (0.31 eV), 2a (0.27 eV), 4a (0.19 eV). Variable temperature magnetic susceptibility measurements indicate that all four radicals exhibit S = 1/2 Curie-Weiss behavior over the temperature range 20-300 K. At lower temperatures, the three selenium-based radicals display magnetic ordering. Radical 3a, with selenium positioned at the E1 site, undergoes a phase transition at 14 K to a weakly spin-canted (phi = 0.010 degrees) antiferromagnetic state. By contrast, radicals 2a and 4a, which both possess selenium in the E2 position, order ferromagnetically, with Curie temperatures of T(c) = 12.8 and 17.0 K, respectively. The coercive fields H(c) at 2 K of 2a (250 Oe) and 4a (1370 Oe) are much larger than those seen in conventional light atom organic ferromagnets. The transport properties of the entire series 1a-4a are discussed in the light of Extended Hückel Theory band structure calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja801070d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!