Antibody microarrays as an experimental platform for the analysis of signal transduction networks.

Adv Biochem Eng Biotechnol

Division of Molecular Genome Analysis, B050, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.

Published: October 2008

A significant bottleneck for the time-resolved and quantitative description of signaling networks is the limited sample capacity and sensitivity of existing methods. Recently, antibody microarrays have emerged as a promising experimental platform for the quantitative and comprehensive determination of protein abundance and protein phosphorylation. This review summarizes the development of microarray applications involving antibody-based capture of target proteins with a focus on quantitative applications. Technical aspects regarding the production of antibody microarrays, identification of suitable detection and capture antibody pairs, signal detection methods, detection limit, and data analysis are discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2008_101DOI Listing

Publication Analysis

Top Keywords

antibody microarrays
12
experimental platform
8
antibody
4
microarrays experimental
4
platform analysis
4
analysis signal
4
signal transduction
4
transduction networks
4
networks bottleneck
4
bottleneck time-resolved
4

Similar Publications

AI-Assisted High-Throughput Tissue Microarray Workflow.

Methods Protoc

November 2024

Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.

Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups.

View Article and Find Full Text PDF

Concave Magnetic-Responsive Hydrogel Discs for Enhanced Bioassays.

Biosensors (Basel)

December 2024

School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.

Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) is the stage IV of glioma and mesenchymal GB represents the most common and malignant subtype characterized with elevated expression of a mesenchymal marker YKL-40 and resistance to immune drug therapy. Here, we determined if YKL-40 regulates kynurenine (Kyn) pathway (KP) metabolism that contributes to establishing an immune suppressive microenvironment in GB.

Methods: Tumor cells expressing YKL-40 from GB patients were isolated and activated cellular metabolisms were identified via gene microarray analysis.

View Article and Find Full Text PDF

Background And Objective: Accumulated evidence supports the tendency of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis(AAV) to coexist with atherosclerosis (AS). However, the common etiology of these two diseases remains unclear. This study aims to explore the mechanisms underlying the concurrent occurrence of ANCA and AS.

View Article and Find Full Text PDF

Background: Presensitized patients with circulating donor-specific antibodies (DSAs) before transplantation are at risk for antibody-mediated rejection (AMR). Peritransplant desensitization mitigates but does not eliminate the alloimmune response. We examined the possibility that subthreshold AMR activity undetected by histology could be operating in some early biopsies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!