Protein interactions: analysis using allele libraries.

Adv Biochem Eng Biotechnol

Vista Biologicals, 2120 Las Palmas Drive, 92011, Carlsbad, CA, USA.

Published: October 2008

Interaction defective alleles (IDAs) are alleles that contain mutations affecting their ability to interact with their wild type binding partners. The locations of the mutations may lead to the identification of protein interaction domains and interaction interfaces. IDAs may also distinguish different binding interfaces of multidomain proteins that are part of large complexes, thus shedding light on large protein structures that have yet to be determined. IDAs may also be used in conjunction with RNAi to dissect protein interaction networks. Here, the wild type allele is knocked down and replaced with an IDA that has lost the ability to interact with a specific binding partner. As a result, interactions are disrupted rather than knocking out the entire gene. Thus, IDAs have the potential to be extremely valuable tools in protein interaction network analysis. IDAs can be isolated by reverse two-hybrid analysis, which was demonstrated over a decade ago, but high background levels caused by truncated IDAs have prevented its widespread adoption. We recently described a novel method for full-length allele library generation that eliminates this background and increases the efficiency of the reverse two-hybrid protocol (and IDA isolation) significantly. Here we discuss our strategy for allele library generation, the potential uses of IDAs as outlined above, and additional applications of allele libraries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2008_102DOI Listing

Publication Analysis

Top Keywords

protein interaction
12
allele libraries
8
ability interact
8
wild type
8
reverse two-hybrid
8
allele library
8
library generation
8
idas
7
protein
5
allele
5

Similar Publications

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age.

Nat Immunol

January 2025

Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.

A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age.

View Article and Find Full Text PDF

Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death. Here we show that CARD domains are present in defence systems that protect bacteria against phage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!