Perceived size and spatial coding.

J Neurosci

School of Psychology, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Published: June 2008

AI Article Synopsis

  • The human visual system can perceive objects of the same size differently based on their distance from the viewer and the context of the images.
  • Viewing distance and sequential image presentation can influence spatial coding, as seen in the tilt aftereffect phenomenon.
  • Research findings indicate that these spatial interactions in vision are influenced not just by the actual size of the objects but also by how large they appear to be.

Article Abstract

Images of the same physical dimensions on the retina can appear to represent different-sized objects. One reason for this is that the human visual system can take viewing distance into account when judging apparent size. Sequentially presented images can also prompt spatial coding interactions. Here we show, using a spatial coding phenomenon (the tilt aftereffect) in tandem with viewing distance cues, that the tuning of such interactions is not simply determined by the physical dimensions of retinal input. Rather, we find that they are contingent on apparent size. Our data therefore reveal that spatial coding interactions in human vision are modulated by processes involved in the determination of apparent size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670320PMC
http://dx.doi.org/10.1523/JNEUROSCI.0578-08.2008DOI Listing

Publication Analysis

Top Keywords

spatial coding
16
apparent size
12
physical dimensions
8
viewing distance
8
coding interactions
8
perceived size
4
spatial
4
size spatial
4
coding
4
coding images
4

Similar Publications

Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

The auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues.

View Article and Find Full Text PDF

Background: Grid cells are spatially modulated cells in the entorhinal cortex (EC) that fire in a hexagonally patterned grid which tiles the environment. These cells are assumed important in human spatial navigation. The EC is vulnerable to neurodegenerative processes in both normal aging and Alzheimer's disease and decline in grid cell function may be a key factor in understanding age-related navigational decline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Cerebral amyloid angiopathy (CAA), defined as the accumulation of amyloid in cerebral blood vessels causing alterations in the blood brain barrier (BBB) and the gliovascular unit, occurs in over 85% of Alzheimer's disease (AD) cases, positioning CAA as one of the strongest vascular contributors to age-related cognitive decline. However, the specific mechanisms in the microvasculature that become altered due to amyloid deposition and its downstream effects on the brain are complex and incompletely understood. A spatial transcriptomic analysis comparing pathways affected in the gliovascular niche differently in the presence of vascular amyloid could provide critical insight into the mechanisms underlying cerebrovascular changes involved in the deposition of Amyloid in the cerebrovasculature.

View Article and Find Full Text PDF

Background: Dementia exerts a significant global impact on societies and individuals. Spatial disorientation emerges as one of the initial symptoms of Alzheimer's Disease (AD) (Coughlan et al., 2018).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!