Lead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.05.058DOI Listing

Publication Analysis

Top Keywords

human urotensin-ii
8
urotensin-ii antagonists
8
improved pharmacokinetic
8
pharmacokinetic profiles
8
compounds improved
8
potent selective
4
selective small-molecule
4
small-molecule human
4
antagonists improved
4
profiles lead
4

Similar Publications

Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV.

View Article and Find Full Text PDF

The cyclic human neuropeptide Urotensin II (hU-II) is an important regulatory peptide found in the central nervous system, cardiovascular system, kidney, etc., however, its conformational structure and dynamics in aqueous solutions have not been studied in detail experimentally. In the present study, the structure of hU-II and the mechanism of its adsorption on the electrochemically roughened Ag electrode are investigated using electrochemical surface-enhanced Raman scattering spectroscopy (EC-SERS) in the voltage range from -1.

View Article and Find Full Text PDF

Small airway fibrosis plays a critical role in the progression of chronic obstructive pulmonary disease (COPD). Previous research has suggested that Urotensin-II (U-II) and transforming growth factor-β (TGF-β) may contribute to pathological fibrosis in various organs, including the cardiovascular system, lungs, and liver. However, their specific relationship with airway fibrosis in COPD has not yet been thoroughly investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Inherited or sporadic loss of a specific gene can lead to pulmonary lymphangioleiomyomatosis (LAM), a rare lung disease caused by tumor nodules that display characteristics of neural crest and smooth muscle cells.
  • The abnormal growth of these "LAM cells" is linked to increased activity of the mTORC1 protein, which is typically regulated by the TSC1-TSC2 protein complex; while rapamycin slows LAM progression, it does not eliminate the disease, suggesting other processes are involved.
  • Recent studies have identified G-protein coupled urotensin-II receptor (UT) signaling as a key player in LAM's cancer-related signaling, revealing that enhanced signaling through UT promotes harmful cell behaviors in
View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!