Stem cell transplantation is emerging as a potential treatment option for acute renal failure (ARF) because of its capability to regenerate tissues and organs. To better understand the mechanism of cell therapy, in vivo tracking cellular dynamics of the transplanted stem cells is needed. In the present study, in vivo monitored magnetically labeled mesenchymal stem cells (MSCs) were transplanted intravascularly into an ARF rat model using a conventional magnetic resonance imaging (MRI) system. Rat bone marrow MSCs were labeled with home synthesized Fe2O3-PLL, and labeled (n = 6) or unlabeled MSCs (n = 6) were injected into the renal arteries of the rats with ARF induced by the intramuscular injection of glycerol. Using the same technique, labeled MSCs were also injected into the rats assigned to a control group (n = 8). MR images of kidneys were obtained before injection of MSCs as well as immediately, 1, 3, 5, and 8 days afterwards. MR findings were analyzed and compared with histopathological and immunohistochemical results. These results showed that the rat MSCs were successfully labeled with the home synthesized Fe2O3-PLL. In both renal failure and intact rat models, the labeled MSCs demonstrated a loss of signal intensity in the renal cortex on T2*-weighted MR images, which was visible up to 8 days after transplantation. Histological analyses showed that most of the labeled MSCs that tested positive for Prussian blue staining were in glomerular capillaries, corresponding to the areas where a loss in signal intensity was observed in the MRI. A similar signal intensity decrease was not detected in the rats with unlabeled cells. These data demonstrate that the magnetically labeled MSCs in the rat model of ARF were successfully evaluated in vivo by a 1.5 T MRI system, showing that the mechanisms of stem cell therapy have great potential for future ARF treatment recipients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368908784153878 | DOI Listing |
Front Pharmacol
January 2025
Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
Introduction: The risk of kidney fibrosis is significantly elevated in individuals with diabetes, chronic nephritis, trauma, and other underlying conditions. Concurrently, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and their extracellular vesicles (MSC-Exos) have gained prominence in regenerative medicine. In light of these observations, we are undertaking a meta-analysis to elucidate the influence of hUCB-MSCs and MSC-Exos on kidney fibrosis.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
Unlabelled: There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFTissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Implantology, Stomatological Hospital and Dental School, Tongji University & Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai200072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!