Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease lacking effective therapies. Cell replacement therapy has been suggested as a promising therapeutic approach for multiple neurodegenerative diseases, including motor neuron disease. We analyzed expanded mesenchymal stem cells (MSCs) isolated from sporadic ALS patients and compared them with MSCs isolated from healthy donors. MSCs were isolated from bone marrow by Percoll gradient and maintained in culture in MSC Medium until the third passage. Growth kinetics, immunophenotype, telomere length, and karyotype were evaluated during in vitro expansion. Osteogenic, adipogenic, chondrogenic, and neurogenic differentiation potential were also evaluated. No morphological differences were observed in the MSCs isolated from donors or patients. The cellular expansion potential of MSCs from donors and patients was slightly different. After three passages, the MSCs isolated from donors reached a cumulative population doubling higher than from patients but the difference was not statistically significant. No significant differences between donors or patients were observed in the immunophenotype analysis. No chromosomal alteration or evidence of cellular senescence was observed in any samples. Both donor and patient MSCs, after exposure to specific conditioning media, differentiated into adipocytes, osteoblasts, chondrocytes, and neuron-like cells. These results suggest that extensive in vitro expansion of patient MSCs does not involve any functional modification of the cells, including chromosomal alterations or cellular senescence. Hence, there is a good chance that MSCs might be used as a cell-based therapy for ALS patients.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368908784153940DOI Listing

Publication Analysis

Top Keywords

mscs isolated
20
donors patients
12
mscs
9
bone marrow
8
mesenchymal stem
8
stem cells
8
healthy donors
8
amyotrophic lateral
8
lateral sclerosis
8
als patients
8

Similar Publications

Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.

J Funct Biomater

December 2024

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!