Novel miniaturized polyvinyl chloride (PVC) membrane sensors in all-solid state graphite and platinum wire supports were developed, electrochemically evaluated and used for the assay of rivastigmine hydrogen tartrate drug (RIV). The RIV sensors are based on the formation of an ion-association complex between the drug cation and tetrakis(4-chlorophenyl)borate (TpClPB) anionic exchanger as electroactive material dispersed in a PVC matrix. Linear responses of 10(-2) - 10(-5) M and 10(-2) - 10(-4) M with cationic slopes of 56.4 mV and 53.6 mV over the pH range 4 - 7 were obtained by using the RIV-coated graphite (sensor 1) and platinum wire (sensor 2) membrane sensors, respectively. The proposed method displays useful analytical characteristics for the determination of RIV in Exelon capsules with average recoveries of 100.01+/-0.835, 100.09+/-0.896, and in plasma with average recoveries of 99.47+/-0.97, 99.58+/-0.82, and in rat brain homogenate with average recoveries of 98.16+/-1.62, 99.02+/-1.57, for sensors 1 and 2, respectively. The methods were also used to determine the intact drug in the presence of its degradation product and thus could be used as stability indicating methods. The results obtained by the proposed procedures were statistically analyzed and compared with those obtained by using a reported method. No significant difference for both accuracy and precision was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.56.753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!