The aim of the present study was to investigate the mechanism for the stereoselective presystemic clearance of carvedilol. We examined the oxidation and glucuronidation of carvedilol in human liver microsomes (HLM) and human intestinal microsomes (HIM). The oxidation of carvedilol in HLM and HIM was evaluated in the presence of NADPH, whereas glucuronidation was evaluated in the presence of UDP-glucuronic acid. Oxidation of S-carvedilol in HLM and HIM was greater than that of R-carvedilol. In addition, the oxidation of R-carvedilol in HLM was inhibited by quinidine, whereas that of S-carvedilol was inhibited by both quinidine and furafylline. On the other hand, R- and S-carvedilol oxidation in HIM was inhibited by ketoconazole. Glucuronidation of S-carvedilol in HLM and HIM was also higher than that of R-carvedilol. These results suggested that cytochrome P450 (CYP) 2D6 and CYP1A2 are involved in the stereoselective oxidation of carvedilol in the liver, that CYP3A4 is involved in intestinal oxidation, and that glucuronidation in the liver and intestine is at least partly responsible for stereoselective presystemic clearance.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.31.1297DOI Listing

Publication Analysis

Top Keywords

oxidation glucuronidation
12
stereoselective oxidation
8
glucuronidation carvedilol
8
carvedilol human
8
human liver
8
intestinal microsomes
8
stereoselective presystemic
8
presystemic clearance
8
oxidation carvedilol
8
evaluated presence
8

Similar Publications

Raisins are an important source of polyphenolic compounds in plant foods, and polyphenols are associated with antioxidant and anti-aging activity. In this work, 628 polyphenols in raisin extracts were characterized using UPLC-MS/MS, mainly including tricetin 3'-glucuronide, diisobutyl phthalate, butyl isobutyl phthalate, isoquercitrin and 6-hydroxykaempferol-7-O-glucoside. The oxidative stress in HO-induced HepG2 cells and D-gal-induced aging mice was alleviated by raisin polyphenols (RPs) via increases in the cellular levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), along with decreases in malonaldehyde (MDA), reactive oxygen species (ROS) and advanced glycosylation end-products (AGEs) levels.

View Article and Find Full Text PDF

Rationale: Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM.

View Article and Find Full Text PDF

Nowadays, synthetic cathinones (SCs) is the second more representative subclass of New Psychoactive Substances, accounting for 104 analogues in the illegal market. Since its first report in 2011, α-pyrrolidinovalerophenone (α-PVP) gained popularity among drug users, provoking an increased number of intoxications. Nonetheless, pharmacokinetics data is still limited in the literature.

View Article and Find Full Text PDF

Paracetamol (APAP) overdose is the leading cause of drug-induced liver injury, leading to acute liver failure. However, the role of concurrent acute or chronic ethanol ingestion in this context requires further clarification. In this study, we investigated the effects of acute and chronic ethanol ingestion on APAP-induced hepatotoxicity.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!