The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2418586 | PMC |
http://dx.doi.org/10.1101/gad.473008 | DOI Listing |
Front Physiol
December 2024
Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, India.
Introduction: , the vector of multiple arboviral diseases, is a prime health concern worldwide. The surge in borne diseases emphasizes the urgent need for efficient vector control measures. Synthetic pesticides used traditionally, however, present environmental concerns and issues like resistance development, causing the use of higher chemical doses.
View Article and Find Full Text PDFEMBO Rep
January 2025
Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
Facultative heterochromatin is marked by the repressive histone modification H3K27me3 in eukaryotes. Deposited by the PRC2 complex, H3K27me3 is essential for regulating gene expression during development, and chromatin bearing this mark is generally considered transcriptionally inert. The PRC2 complex has also been linked to programmed DNA elimination during development in ciliates such as Paramecium.
View Article and Find Full Text PDFGenome Res
January 2025
Max Planck Institute for Biology, 72076 Tübingen, Germany;
One of the most extensive forms of natural genome editing occurs in ciliates, a group of microbial eukaryotes. Ciliate germline and somatic genomes are contained in distinct nuclei within the same cell. During the massive reorganization process of somatic genome development, ciliates eliminate tens of thousands of DNA sequences from a germline genome copy.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
The PIWI-interacting RNA (piRNA) pathway is crucial for transposon repression and the maintenance of genomic integrity. Gametocyte-specific factor 1 (GTSF1), a PIWI-associated protein indispensable for transposon repression, has been recently shown to potentiate the catalytic activity of PIWI in many metazoans. Whether the requirement of GTSF1 extends to PIWI proteins beyond metazoans is unknown.
View Article and Find Full Text PDFJ Cell Sci
August 2024
Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sex, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique internal eliminated sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!