We investigate theoretically the behavior of the current oscillations in an electronic Mach-Zehnder interferometer (MZI) as a function of its source bias. Recently, the MZI visibility data showed an unexplained lobe pattern with a peculiar phase rigidity. Moreover, the effect did not depend on the MZI path length difference. We argue that these effects may be a new many-body manifestation of particle-wave duality in quantum mechanics. When biasing the interferometer sources so much that multiple electrons are on each arm at any instant in time, quantum shot noise (a particle phenomena) must affect the interference pattern of the electrons that create it. A solution to the interaction Hamiltonian presented here shows that the interference visibility has a lobe pattern with applied bias that has a period proportional to the average path length and independent of the path length difference, together with a phase rigidity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.100.196806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!