Analysis of DNA elasticity.

Phys Rev Lett

Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.

Published: April 2008

With a model that incorporates hydrodynamics directly, we show that flow experiments can be used for detecting some characteristics of the DNA elasticity which manifest themselves clearly at large length scales but cannot be observed by mechanical forcing experiments even at very small length scales. By systematic analysis, the conclusiveness of different experimental methods is evaluated. For the wormlike chain, confirmed as the correct model for DNA, we find an underlying scaling relation between its extension and flow velocity of the form L(p) approximately v(0.155), which emphasizes the significance of hydrodynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.168104DOI Listing

Publication Analysis

Top Keywords

dna elasticity
8
length scales
8
analysis dna
4
elasticity model
4
model incorporates
4
incorporates hydrodynamics
4
hydrodynamics directly
4
directly flow
4
flow experiments
4
experiments detecting
4

Similar Publications

The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple public databases were integrated.

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Methylome analysis in long-lived men deciphers DNA methylation modifications associated with male longevity in humans.

Cell Rep

January 2025

Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. Electronic address:

Men, despite having a lower likelihood of longevity compared to women, generally exhibit better health status when they achieve longevity. The role of DNA methylation in this paradox remains unclear. We performed whole-genome bisulfite sequencing on long-lived men (LLMs), long-lived women (LLWs), younger men (YMs) and younger women (YWs) to explore specific methylation characteristics in LLMs.

View Article and Find Full Text PDF

Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.

Subcell Biochem

December 2024

Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.

All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties.

View Article and Find Full Text PDF

Optical Tweezers to Study Viruses.

Subcell Biochem

December 2024

Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.

A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!