A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.100.158303 | DOI Listing |
Entropy (Basel)
January 2025
Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain.
Heat engines transform thermal energy into useful work, operating in a cyclic manner. For centuries, they have played a key role in industrial and technological development. Historically, only gases and liquids have been used as working substances, but the technical advances achieved in recent decades allow for expanding the experimental possibilities and designing engines operating with a single particle.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt +201113343594.
Achieving a net-zero emissions economy requires significant decarbonization of the transportation sector, which depends on the development of highly efficient electrocatalysts. Electrolytic water splitting is a promising approach to this end, with Ni-Mo alloys emerging as strong candidates for hydrogen production catalysts. This study investigates the electrodeposition of Ni and Ni-Mo nanostructured alloys with high molybdenum content onto low-carbon steel cathodes using a novel alkaline green lactate bath.
View Article and Find Full Text PDFBiofabrication
January 2025
Biomedical Engineering and CÚRAM, SFI Research Centre for Medical Devices, University of Galway, School of Engineering, University Road, Galway, Ireland, Galway, H91 TK33, IRELAND.
Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for in-situ monitoring of extrusion outcomes during embedded bioprinting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!