As shown in earlier work [Ahlers, J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point, the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient beta(T). More precisely, it is the nonlinear T dependence of the density rho(T) in the buoyancy force that causes another type of NOB effect. We demonstrate this through a combination of experimental, numerical, and theoretical work, the last in the framework of the extended Prandtl-Blasius boundary-layer theory developed by Ahlers as cited above. The theory comes to its limits if the temperature dependence of the thermal expension coefficient beta(T) is significant. The measurements reported here cover the ranges 2.1

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.046302DOI Listing

Publication Analysis

Top Keywords

ethane close
8
close critical
8
critical point
8
nob corrections
8
temperature dependence
8
coefficient betat
8
non-oberbeck-boussinesq effects
4
effects turbulent
4
thermal
4
turbulent thermal
4

Similar Publications

Chalcogen bonds (ChBs) involving selenium have attracted substantial scholarly interest in past years owing to their fundamental roles in various chemical and biological fields. However, the effect of the valency state of the electron-deficient selenium atom on the characteristics of such ChBs remains unexplored. Herein, we comparatively studied the σ-hole-type Se∙∙∙O ChBs between SeF/SeF and a series of oxygen-bearing Lewis bases, including water, methanol, dimethyl ether, ethylene oxide, formaldehyde, acetaldehyde, acetone, and formic acid, using ab initio computations.

View Article and Find Full Text PDF

Physical and Chemical Characterization of Aerosols Produced from Commercial Nicotine Salt-Based E-Liquids.

Chem Res Toxicol

December 2024

Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States.

Nicotine salt e-liquids are widely used in pod-style and disposable electronic nicotine delivery systems (ENDS). Studying the physical and chemical properties of their emissions can inform their toxicological impact. A prior companion study reported the harmful and potentially harmful constituents (HPHCs) and aerosol particle sizes produced from laboratory-made nicotine salt and freebase nicotine e-liquids to assess the effects of varying nicotine salts and nicotine protonation.

View Article and Find Full Text PDF

Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry.

ACS Sens

December 2024

Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.

Highly sensitive and selective imaging of human-borne volatile organic compounds (VOCs) enables an intuitive understanding of their concentrations and release sites. While multi-VOC imaging methods have the potential to facilitate step-by-step metabolic tracking and improve disease screening accuracy, no such system currently exists. In this study, we achieved simultaneous imaging of ethanol (EtOH) and acetaldehyde (AcH), the starting molecule and an intermediate metabolite of alcohol metabolism, using a multiwavelength VOC imaging system.

View Article and Find Full Text PDF

Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion.

J Am Chem Soc

December 2024

State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaO with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaO-Solid Solution (MnGaO-SS) is a typical Mn-doped hexagonal close-packed (HCP) GaO with a Ga-rich surface.

View Article and Find Full Text PDF

Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions-In Silico Studies of Drug-Likeness and Human Placental Transport.

Int J Mol Sci

November 2024

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and "ARKA" models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!