We introduce a continuum model describing data losses in a single node of a packet-switched network (like the Internet) which preserves the discrete nature of the data loss process. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process. The continuum model allows for rather general incoming data packet distributions and can be naturally generalized to consider the buffer server idleness statistics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.77.046115 | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
January 2025
Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia. Electronic address:
Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders.
View Article and Find Full Text PDFJ Mol Model
January 2025
Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.
Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China.
Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.
View Article and Find Full Text PDFJ Orthop Sports Phys Ther
February 2025
On-pitch rehabilitation is a crucial part of returning to sport after injury in elite soccer. The () initially offered a framework for practitioners to plan on-pitch rehabilitation, focusing on physical preparation and sport specificity. However, our experiences with the , combined with recent research in injury neurophysiology, point to a need for an updated model that integrates practice design and physical-cognitive interactions.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
Introduction: Traditional multivariate methods for neuroimaging studies overlook the interdependent relationship between brain features. This study addresses this gap by analyzing relative brain volumetric patterns to capture how Alzheimer's disease (AD) and genetics influence brain structure along the disease continuum.
Methods: This study analyzed data from participants across the AD continuum from the Alzheimer's and Families (ALFA) and Alzheimer's Disease Neuroimaging Initiative (ADNI) studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!