Neurons are subject to synaptic inputs from many other cells. These inputs consist of spikes changing the conductivity of the target cell, i.e., they enter the neural dynamics as multiplicative shot noise. Up to now, only for simplified models like current-based (additive-noise) point neurons or models with Gaussian white-noise input, exact solutions are available. We present a method to calculate the exact time-dependent moments for the voltage of a point neuron with conductance-based shot noise and a passive membrane. The exact solutions show features (for instance, maxima of the moments vs time) which are also confirmed by numerical simulations. The theoretical analysis of subthreshold membrane fluctuations may contribute to a better comprehension of neural noise in general. We also discuss how the analytical results may provide additional conditions for estimating parameters from experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.77.041913 | DOI Listing |
Small
January 2025
Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.
Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.
Quantitative optical phase information provides an alternative method to observe biomedical properties, where conventional phase imaging fails. Phase retrieval typically requires multiple intensity measurements and iterative computations to ensure uniqueness and robustness against detection noise. To increase the measurement speed, we propose a single-shot quantitative phase imaging method with metasurface optics that can be conveniently integrated into conventional imaging systems with minimal modification.
View Article and Find Full Text PDFSci Rep
January 2025
Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E, Malaysia.
It is important in the rising demands to have efficient anomaly detection in camera surveillance systems for improving public safety in a complex environment. Most of the available methods usually fail to capture the long-term temporal dependencies and spatial correlations, especially in dynamic multi-camera settings. Also, many traditional methods rely heavily on large labeled datasets, generalizing poorly when encountering unseen anomalies in the process.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Background: At high magnetic fields, degraded image quality due to dielectric artifacts and elevated specific absorption rate (SAR) are two technical challenges in fetal MRI.
Purpose: To assess the potential of high dielectric constant (HDC) pad in increasing image quality and decreasing SAR for 3 T fetal MRI.
Study Type: Prospective.
Comput Vis ECCV
November 2024
University of Minnesota, Minneapolis.
Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!