Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, USA.

Published: April 2008

Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of the surface-induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.041606DOI Listing

Publication Analysis

Top Keywords

slip length
12
shear rates
12
local minimum
8
friction coefficient
8
shear
6
slip
5
slip boundary
4
boundary conditions
4
conditions shear
4
shear flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!